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ABSTRACT
Contemporary industries are devoting increasing attention

to the product development process, due to tight market shares
and the abridged product life cycle. Reliable scaled product
testing with rapid prototypes has the potential to improve these
processes by replacing traditional costly and time-consuming
product tests.  In this context, rapid prototypes provide visual,
ergonomic, and functional information with minimal time delay.
Among the information classes, reliable functional information
is least realized because of several features of rapid prototypes:
(1) limited material choices and part size; (2) distinct material
structure; (3) restrictive loading conditions; and (4) state-
dependent material properties.  To develop reliable functional
tests, an improved similarity method is needed to overcome
these limitations.  The traditional similarity method, based on a
Buckingham Π approach, is commonly applied to perform
scaled tests.  In contrast to this method, wherein the state
transformation between two similar systems is derived from
dimensional vectors, we present a new similarity method that
empirically derives the transformation from a geometrically
simple specimen pair.  The primary advantage of the new
method over the traditional method is the capability to relate
highly distorted systems.  In this paper, the concept and
theoretical framework of the novel similarity method are
introduced, and two numerical examples demonstrate the new
method.

Keywords: Product development, Buckingham Π theorem,
Similarity Method, Rapid Prototyping, Scaled functional
testing, Distorted similarity, Empirical state transformation

1  INTRODUCTION
The objective of a similarity method is to experimentally

predict the behavior of a target system through an indirect
scaled testing, alleviating complex system construction and
testing effort.  Traditionally, a scaled physical model that can
show similar behavior is designed on the basis of the
Buckingham Π theorem, and the behavior of the target system
is estimated from the mathematically derived scaling laws
(Kline,  1965; Baker et al., 1991).  In some special cases, more
expensive scaled-up models are prepared (Burton et al., 1967).
However, it is typical to geometrically scale down (Mixson and
Catherine, 1964), to change materials (Wright and Bannister,
1971), and/or to simplify models (Fay,  1993) in order to reduce
the physical modeling effort.  In the context of product design,
an improved similarity method, aided by advanced prototyping
techniques, may accelerate design processes if it can yield
reliable predictions with relaxed restrictions on scaled models.

Product design is a recursive and iterative process that
relies on various kinds of information to transform customer
needs into concepts, embodied and detailed virtual products,
and finally physical products.  Industries utilize both virtual and
physical models to procure reliable information.  Even though
the applicable problem domains and accuracy of virtual models
are increasing, the industrial trend is to verify and adjust
product performance and quality through physical testing.
Based on this practice, Wall et al. investigated and evaluated
several prototyping techniques (Stereolithography, rubber
molding, CNC machining) (Wall et al., 1991).  According to
their study, rapid prototyping usually requires the least cost and
time for the fabrication of a single part, but rapid prototyping
materials are too limited to perform diverse functional tests.

Rapid prototyping or solid freeform fabrication is a
relatively new set of technologies that can effectively fabricate
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geometrically complex parts directly from CAD data without
part specific tooling.  Since the late 1980’s, several unique rapid
prototyping techniques have been developed and advanced.
Most of the systems can fabricate geometrically complex
prototypes within approximately 50 hours, where polymers are
the most popular base material (Aubin, 1994).  In some
industries, rapid prototypes are already being used to enhance
communication, to detect design faults early, and to build
patterns or molds for casting (Jacobs, 1992).  Some functional
tests are also performed with rapid prototypes thanks to
improved geometric accuracy and strength, but these tests are
limited to certain problem domains.

Surprisingly, very little literature exists on the functional
testing with rapid prototypes (Dornfeld, 1995; Steinchen et al.,
1995).  Most such studies are based on traditional similarity,
and are limited to experimentally examining the test results
without providing a way to improve test results.  In the
traditional similarity method, the corresponding dimensionless
parameters of the rapid prototype and the product should be
kept identical.  However, this condition cannot always be
satisfied due to the limited prototyping materials and size,
uncertain system parameters, and restricted loading conditions.
Additionally, the method presumes similarity of material
behavior (e.g., stress-strain curve) and structure (e.g., isotropic)
between two systems.  These presumptions may be violated as
(1) material behavior varies from one material to another; and
(2) material structure is dependent on fabrication processes.

To overcome such problems, this paper introduces a new
empirically based similarity method.  The concept of the new
similarity method is motivated from two observations: (1) the
information utilized by the traditional method (dimensional
vectors) is too restrictive; and (2) the cost and time for physical
modeling is highly dependent on geometrical complexity.
Instead of dimensional vectors, a correlation between two
geometrically complex systems is empirically derived from
geometrically simple specimens.  The details of the concept and
applications are presented in the following section.

2  LIMITATIONS IN SCALED TESTING WITH RAPID
PROTOTYPES

To clarify the necessity of a new similarity method, the
traditional similarity method is briefly introduced.  In addition,
the current status of rapid prototyping techniques is described.

2.1  Traditional Similarity Method
The two main applications of the Buckingham Π theorem

are:
• To provide a means of significantly reducing the effort to

build empirical models by reducing the number of required
experiments (dimensional analysis).

• To design a scaled system, and to predict the behavior of
the system of interest by testing this scaled system. This
application is known as similarity, the similitude method, or
comparative dimensional analysis (emphasizing two
systems).

 The first approach is inappropriate for our purposes, as it
focuses on effective modeling through the real system, not a
scaled one.  The fundamentals of the Buckingham Π theorem
will be mathematically described by highlighting comparative
dimensional analysis.

 2.1.1  Mathematical Framework of the Π theorem
In general, the functional relationship between a state of

interest X and n independent system parameters Pi can be
represented as follows:

X f P P Pn= ( , , , )1 2 L             (1)

where the function f is unknown.  If X and the Pi involve k
fundamental dimensions (e.g., mass, length, time, temperature),
( )d d d1 2 k,  , ,  L , then the dimension of X and each Pi can  be

represented as
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where the exponents, R Xj ( )  and R Pj i( ) , are rational numbers

which are dependent on X and Pi respectively.
The dimension vector α is defined as a k × 1  column

vector composed of exponents of the fundamental dimensions:

[ ]α( ) ( ) ( ) ( ) .P R P R P R Pi i i k i

T
= 1 2 L            (3)

Taking dimension vectors as column vectors, the dimension
matrix B of n system parameters is defined as the k n×  matrix,

[ ]B = α α α( ) ( ) ( )P P Pn1 2 L .  (4)

If the rank of B is ρ, the system can be represented with
N n= − ρ  dimensionless parameters. The N dimensionless

parameters can be derived from the linearly independent N
general solutions x p

i  of

    B x 0⋅ =p .         (5)
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where i=1, 2, … , N.
Similarly, the dimensionless parameter that includes state

variable X can be represented as π ξ
X i

i

n

X P i= ⋅
=

∏
1

, where  the

ξi ’s are solutions of ( )B ⋅ = −ξ ξ ξ1 2 L n

T
Xα( ) .

With the derived π X and π i ’s, the system represented by Eq.

(1) can be equivalently expressed as
π π π πX NF= ( , , , )1 2 L . (7)

Barr introduced the echelon matrix procedure as a
systematic method to derive dimensionless parameters with
several interesting examples (Barr, 1984).
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2.1.2  Comparative Dimensional Analysis
Consider two systems ∑ A  and ∑ B , that can be represented

as

X f P P P

X f P P P
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where the Pi’s are system parameters that are related to system
geometry, material and loading conditions.  These systems can
also be equivalently represented as
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where πi’s are dimensionless parameters, which are related to
the Pi’s.

If  π πi
A

i
B=  for any i=1, 2, … , N, then π πX

A
X

B= from Eq.

(9).  As a result, one can predictX A  from the following
prediction equation
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if  all system parameters of ∑ A  do not violate any of the

similarity constraints,
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for all i=1, 2, …, N.  When all of these constraints are satisfied,
two systems are defined as well-scaled; otherwise, distorted or
badly-scaled.

For convenience and consistency, deriving scaling laws
from Eqs. (10) and (11) is preferred.  The scaling laws are
compact representations of Eqs. (10) and (11),  and they are
functions of scale factors (Baker et al. 91).  The scale factor of a

system parameter P is defined as λ p
t

p

P

P
= .  Here the subscript

t and p denote the target system whose states are to be
predicted, and the prototype which is prepared for scaled
testing.

The traditional similarity method derives the prediction
equation and similarity constraints (Eqs. (10) and (11))
assuming that the two system equations can be represented in
the same functional form, as shown in Eq. (8).  However, this
assumption may not be valid due to following reasons:

• limited material choices and dimensions of available scaled
models;

• unknown boundary conditions; and
• difficulties in realizing desired boundary conditions.

The new similarity method aims to eliminate or  mitigate
these problems by testing a specimen pair thus generating more
information about the system.  In the new method, n
corresponding states of ∑ A  and ∑ B  are related by a n n×
matrix, instead of the prediction Eq. (11), and the similarity
constraints in Eq. (11) need not to be satisfied, as the identity of
the functional form of two systems is not postulated.

 2.2  Rapid Prototyping Techniques
 Rapid prototyping offers an approach to getting physical

models much more quickly than through conventional means.
However, it becomes more difficult to construct well-scaled
systems when one utilizes rapid prototypes as scaled models,
mainly due to material issues.

 2.2.1 Commercial Systems
 Commercial rapid prototyping systems can fabricate

geometrically complex parts, but they impose restrictions on
part size and material choices.  As the similarity constraints, Eq.
(11), are coupled functions of system parameters (related to part
size, material, and loading conditions), construction of well-
scaled rapid prototypes is not always possible.  To understand
these limitations, Tables 1 and 2 summarize part size and
available materials in current commercial rapid prototyping
systems.  Larger size capacities and ranges of material
properties are currently being developed in the industry.

 2.2.2  Advances in Rapid Prototyping Techniques
 The fabrication of electrical interconnects and in situ

sensors (Beck et al., 1992; Sun et al., 1997; Safari et al., 1997)
is a noticeable research area for functional testing with rapid
prototypes.  Rapid prototypes with electrical interconnects and
in situ sensors open new avenues for functional testing by
enhancing the monitoring of the internal system behavior.  The
effort to embed sensors (Halwel and Klameckl, 1991), and the
application of embedded sensors (Smith et al., 1992) to smart
structures, shows the possibility and necessity of these
techniques.

 
 Table 1. Price Comparison of Rapid Prototyping Systems

 
 Company  System  Capacity L3

(mm3)
 Cost  C
 (1,000 $)

 C/L3

 3D Systems  SLA-250/30
 SLA-500/20
 SLA-500/30

 250x250x250
 584x508x508
 584x508x508

 215
 495
 540

 0.86
 0.97
 1.06

 EOS GmbH  STEROS300
 STEROS400
 STEROS600

 300x300x250
 400x400x300
 600x600x400

 290
 380
 500

 0.97
 0.95
 0.83

 D-MEC  JSC 2000
 JSC 3000

 500x500x500
 1000x800x500

 500
 750

 1.0
 0.9

 Cubital  Solider 4600
 Solider 5600

 350x350x350
 500x350x500

 325
 550

 0.9
 1.0
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 Recently, efforts to fabricate prototypes with multiple and

functionally gradient materials (Griffith et al., 1997; Jepson et
al., 1997; Fessler et al., 1997) are emerging as a new research
area.  Rapid prototyping with functionally gradient materials
may enable the fabrication of prototypes with manufacturing
process dependent characteristics (e.g., surface hardening of
parts after annealing).  Such advancements will aid in the ability
to create prototypes with desired material properties.

 Along with these relatively new studies, research to
fabricate geometrically accurate parts with desired functional
attributes (e.g, strength, water resistance, heat resistance) has
been continuously carried out.  Owing to this effort,
opportunities to utilize rapid prototypes as functional prototypes
have dramatically increased.  However, functional tests with
rapid prototypes may produce erroneous test results mainly due
to following reasons:
• Most rapid prototyping processes, such as

Stereolithography, Selective Laser Sintering, Shape
Deposition, and 3D printing, fabricate parts by
continuously generating contoured layers from a sheet,
liquid, or powder, and combining the layers (Aubin, 1994).
Due to the layer-additive or subtractive fabrication
schemes, most rapid prototypes show orthotropic material
structure in some degree (Nelson et al., 1993).  In extreme
cases, rapid prototypes show delamination of layers.

• In spite of significant effort to expand the types of base
materials, polymers are still the most popular and
dependable materials.  Polymers show distinct material
behavior from that of metals (Birley et al., 1988).

 
 3 NOVEL EMPIRICAL SIMILARITY METHOD FOR
DISTORTED SIMILARITY PROBLEMS

 Several Π theorem based studies have been carried out for
distorted similarity problems (Murphy, 1971; Bazant, 1994;
Farrar et al., 1994).  Among them, Murphy proposed a strategy
to relax the similarity constraints by casting the prediction
equation into a more complex form.  He converted a simple

linear prediction equation to a nonlinear equation, and
demonstrated how to derive the corresponding design
constraints inversely through a forced vibration example.
Aided by his method, one can design prototype systems with
different restrictions on system parameters when the system
equation is known.

  In parallel to the dimensional analysis based studies, the
symmetry method can be utilized to solve similarity problems.
The symmetry method, originated by Sophus Lie, aims to find
solutions to hard-to-solve nonlinear differential equations from
those of similar linear differential equations.  For boundary
value problems, the symmetry method can be considered as a
generalization of dimensional analysis (Bluman and Kumei,
1989).  However, one needs to know the governing equations in
the form of partial differential equations beforehand.

 Most existing studies attempt to solve specific distorted
similarity problems on the basis of mathematical models and/or
results obtained through extensive experiments.  In contrast, we
derive a state transformation through single specimen testing
without knowledge of the governing equations and material
properties.  As the name implies, the new method empirically
derives the relationship between the corresponding states of a
prototype and its governing product from a specimen pair.  The
new method concentrates on relating corresponding solutions of
two distinct boundary value problems, as we are interested in
problems with complex boundary contours.  In comparison to
the traditional similarity method, which is based on the
Buckingham Π theorem, our new method relaxes restrictions on
the prototype and loading conditions – potentially requiring
only geometrical similarity.  Table 3 summarizes these
distinctions.

 Table 2. Materials available for Rapid Prototyping
 

 Company  Base Materials
 3D Systems

Inc.
 Liquid Photopolymer (Epoxy resin)

 Helisys Inc.  Paper coated with Polyethylene
 Soligen Inc.  Ceramic powder with liquid binder
 Statasys Inc.  Investment casting wax, Polyolefin, Polyamide

 DTM  Nylon, Polycarbonate, ProtoFrom composite,
TruForm PM, Polymer coated sand and bronze
etc.

 Laser 3D  Photopolymer
 C-MET  Hard polymer, Rubber

 D-MET Ltd.  Urethan acrylate

Table 3. Comparison of Traditional and New Empirical
Similarity Method
 

  Traditional Method  New Empirical
Method

 Theoretical
Basis

 Π theorem  Symmetry Method,
BEM

 Required
Conditions

 •  Identity of
configuration of
governing equations and
corresponding π terms
 • Constant system
parameters
 • Geometrical similarity

 Geometrical
similarity between
the prototype and
the product.

 Prediction
Equation

 for n states

 X XM i X Pi= ⋅λ
 where I=1,2,…,n  
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 3.1  Similarity Transformation Matrix
The prediction Eq. (11) can be represented as

X X
P

P

X

A B i
B

i
A

i

n

B
X

i

= ⋅










= ⋅
=

∏
ξ

λ
1

.

       (12)

The scale factor λ X  becomes constant once the prototype

system parameters are chosen such that none of the constraints
on the prototype is violated.  In general continuum problems,
the relationship between states of ∑ A  and ∑ B  at n⋅m
corresponding temporal and spatial points pi and pi
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if  m ≥ n.  If not, the state transformation matrix is not unique.
At first glance, Eq. (13) seems to be trivial.  However, this
equation is fundamental to the empirical similarity method, and
the following theorem can be deduced from this equation.

Theorem 1. State Transformation matrix for well-scaled
systems

The matrix that relates any corresponding n × 1 state
vectors of two well-scaled systems should be diagonal and
its diagonal terms should be identical (scaled identity
matrix).

3.2  Concept of the new similarity method
Let Σ T

 be a target system, whose sub-state vector XT is of

interest.  When Σ T
 requires considerable fabrication effort due

to its geometrical complexity, it is desirable to predict XT from
the corresponding state vector XP of a geometrically similar
prototype Σ P

.  As we attempt to dramatically reduce the

prototyping effort, Σ P
may be fabricated from a rapid

prototyping process.  It is postulated that a reliable relationship
between XT and XP cannot be derived from the traditional
similarity method as the two systems may be distorted due to
their distinct fabrication characteristics.

In comparison to the traditional similarity method that
utilizes dimension vectors, the new method derives a
relationship between XP and XT from a specimen pair, as shown
in Figure 1.  One specimen system Σ TS

is constructed with the

same fabrication process as Σ T
(e.g., traditional machining),

and the other system Σ PS
 with that of Σ P

(e.g., SLS process).

Boundary conditions on Σ TS
 and Σ PS

are imposed similar to

Σ T
and Σ P

, respectively, as shown.

As a preliminary approach, a linear transformation matrix
T that satisfies the following equation,

X T XTS PS= ⋅  (14)

is derived from a specimen pair, so that XT can be predicted
from

X T XT P= ⋅ .  (15)

In order to make the transformation matrix T consistent, the
remaining problems in realizing this new concept are:
• How to determine T from Eq. (14), as the T that satisfies

Eq. (14) is not unique;
• How to design the specimen pair and impose boundary

conditions; and
• How to choose measurement points on the specimen pair,

3.3 Determination of the Transformation Matrix
The derivation of the transformation matrix T that satisfies

Eq. (14) is an undetermined problem, as the state vectors are n
by 1, where n is the number of measurement points, and T is an
n by n matrix.  So, we need constraints or an objective function
to find a meaningful transformation matrix.
From Theorem 1, we postulate:

Proposition 1.1: Transformation for distorted systems

Prototype Specimen (ΣPS)

Product (Target) (ΣT)Product (Target) Specimen (ΣTS)

Prototype (ΣP)

......

......

X1
PS

Xk
PS

X2
PS B1 B1

B2

B2
*

B3

B2

B3
*

B3

B1
* B1

*

B2
*

B3
*

Λp

Ts T = ? 

Λ = ?

X1
P

Xk
P

X2
P

X1
T

Xk
T

X2
T

X1
TS

Xk
TS

X2
TS

Figure 1. State Transformation between Prototype, Target,
and Specimen Pairs
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If there exists a consistent linear state transformation
between two distorted systems, the transformation can be
expressed as the combination of a dominant scaled identity
matrix and a compensation matrix that reflects the pure
system distortion.

Based on this statement, it is assumed that the diagonal
norm of the similarity transformation matrix for distorted
systems is maximal, where the diagonal norm of a n n×  matrix
T is defined as

T
D ii

i

n

t=
=
∑ 2

1

(16)

where j=1,2,…,n.  tij  is an element of T.  In order to maximize

T
D

, T is derived by perturbing the initial matrix T0 defined as

T I0 = ⋅µ λ( )X n .  (17)

In is the n n×  identity matrix and the mean scale factor
µ λ( )X is defined as

µ λ( )
( )

( )*X
TS i

PS ii

n

n

X p

X p
= ⋅

=
∑1

1

(18)

where the subscripts TS and PS denote the target and prototype
specimens.

The complete state transformation T is
T T T= +0 δ , (19)

where δT needs to be found.  As shown in Figure 2, the initial
similarity transformation matrix T0 can be considered the state
transformation, considering that the prototype system is well-
scaled, and δT can be considered the compensation matrix that
represents the purely distorted state transformation.

From Eqs. (14) and (19),
X T T XTS PS= + ⋅( )0 δ , (20)

and a particular solution δT that minimizes its maximum
singular value can be approximated from

δT X T X X= − ⋅ ⋅ +( )TS PS PS0 .  (21)

Here, X ps
+ is the Moore-Penrose pseudo-inverse matrix that

satisfies

X X X X

X X X X

ps ps ps ps

ps ps ps ps

⋅ ⋅ =

⋅ ⋅ =

+

+ + + .
(22)

If δT is negligible, the two systems can be considered well-
scaled.  The matrix norm of δT can be considered a measure for
estimating the degree of distortion between the two systems.

3.4  Partial Proof of the New Similarity Method
The boundary element method, a relatively new numerical

method that solves various boundary value problems (Gipson,
1987; El-Zafrany, 1993; Ingham, 1994), has the potential to
mathematically prove (or disapprove) the validity of the new
similarity method.  In comparison to the finite element or finite
difference method that constructs a system matrix as a coupled
relation between states at all nodal points, the boundary element
method constructs a system matrix that relates only the states of
interest.  Due to this unique feature, the boundary element
method can be used as a vehicle with which one can investigate
the relationship between states at arbitrary finite points of the
prototype and the target.

3.4.1  Boundary Element Representation of 2D
Problems

Consider a simple 2D problem as shown in Figure 3.  The
solid object of interest can be represented by the two
dimensional domain Ω and the boundary surface Γ , and either
natural (e.g., heat flux, traction) or forced boundary conditions
(e.g., temperature, displacement) should be known at all
boundary nodal points.  It should be noted that a forced
boundary condition should be given at least at one nodal point.

The boundary element method converts differential
equations and boundary conditions into a boundary integral
equation, and discretizes the equation into matrix form.  At first,
the complete boundary condition pairs (forced and natural)  at
all nodal points βij are derived by utilizing the given boundary
conditions, Green’s function of a given problem, and the
boundary shape from

H G Q⋅ = ⋅Φ 1. (23)

                                                          
1 In general, there can be an additional term to represent concentrated

source (Poisson’s term).  However, the term is not considered here for
simplicity.

T0

T = T0 + ∆ T

Prototype specimen Dummy target specimen
(Approximated target specimen)

Target specimen

XPS λxXPS XTS

Figure 2. The state transformation between two distorted
 systems

Γ2

Ω
β1

βm

β2

Γ1

Γm

 Γ = Γ1 ∪ Γ2 ∪ ... ∪ Γm

u
ui

n

βi Γiu-ui

upi

pi

βi: nodal point, Γi: boundary element, Ω: interior domain, Γ:
boundary surface

   Figure 3. Boundary Element Representation
         of a 2D Problem
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( ) ( )Φ =  and =φ φ φ1 2 1 2L Lm

T

m

T
q q qQ denote  forced

and natural boundary conditions respectively, where the
subscript is the node number.  At every node, either a natural or
a forced boundary condition should be given.  Here, the m m×
matrices H and G can be determined from the Green’s function
and the boundary shape (Gipson, 1987).

When mixed boundary conditions are given, one should
rearrange Eq. (23) by swapping columns of H and G, and rows
of Φ and Q, in order to make all unknowns appear on one side.
From the rearranged equation, one can find the unknown φi ’s

and qi ’s.  Once the complete Φ and Q are derived, the state

X pi( ) at any point pi  in Ω can be derived from

( )X p X p X pk

T
( ) ( ) ( )1 2 L = ⋅ + ⋅h g QΦ        (24)

where h and g are k m×  matrices.

3.4.2  Proof of the New Method
With the boundary element method, states of four simple

boundary value problems shown in Figure 4 are derived in
order to investigate the state transformation between the four
systems.  It is assumed that only forced boundary conditions are
given to avoid swapping of elements.  T is the similarity
transformation that abstracts the state change due to the
variation of non-geometric parameters.  In comparison, the
geometric transformation Λ represents the state change due to
the variation of the geometry, with the other system parameters
remaining constant.

By considering region 1, Ω1, of the prototype specimen, the
natural boundary condition can be derived from Eq. (23),

q

q

q

q

p

p
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r

φ
φ
φ
φ

(25)

where ri
p1  is a 1 4×  row vector of G H− ⋅1  for Ω1 of the

prototype specimen.  Similarly, the natural boundary condition
of Ω2 becomes

q

q

q

q

p

p

p

p

b

I
p

b

b
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φ
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(26)

where ri
p2  is a 1 4× row vector of G H− ⋅1  for Ω2 of the

prototype specimen..
By applying the compatibility condition, q q4 2’ = −

( )
( )

r

r

4
1

2
2

p
a a a I

p T

p
b I

p
b b

T

⋅

= − ⋅

φ φ φ φ

φ φ φ φ
 (27)

and [ ]φ φ φI
p p p

a a
p

b b
pC r r f f= + ⋅ ⋅ + ⋅( ) ( ) ( )44

1
22

1
4

1
2

2r r .  The

details of the functions C, f a  and fb  are shown in Appendix 1.

From Eqs. (24) and (27), X ps , the 2 1× state vector of Ω2 of

the prototype specimen, can be expressed as

X
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  (28)

Eq. (28) can be reorganized  as

Product Specimen Product

Prototype Specimen Prototype

Λp

TS T

Λ

φa

φa

φa

n1 φa

φaφI
P

φb

φb

φb

n1 φa

n1 φa n2 φb

n2 φb

n2 φb

φb

φb

φb

n1 φa
n2 φb

n2 φb

n2 φb

Ω1 Ω2

X1
PS

X2
PS

X1
P

X2
P

X1
T

X2
T

X1
TS

X2
TSφI

T

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1*

2*

1*

3*

4*

1*

2*

3*

4*

Figure 4.  Simplified Boundary Value Problem
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     (29)

and Qp is not unique.
Applying the same approach to the prototype, the state vector of
the prototype becomes

X Ap p p= ⋅ Φ ,  (30)

as only the boundary conditions of Ω2 of the prototype
specimen and the prototype are distinct.
In the same manner, the state vectors of the target specimen and
the target can be expressed as
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             (31)

and
X At t t= ⋅ Φ . (32)

On the basis of the derived Eqs. (29),(30),(31) and (32), the
similarity and geometric state transformations for the following
typical cases can be examined.  In order to reduce the
complexity of the problem, a specific case will be considered,
and the other cases will be examined through numerical
simulations.  As a specific case, the situation when two systems
are distorted purely due to boundary conditions is considered.

If there exists a certain ideal boundary condition that
results in a scaled identity similarity transformation matrix, then
two systems are defined to be distorted solely due to boundary
conditions.  The ideal boundary condition, which makes two
systems well-scaled, cannot be applied to the prototype when
exact boundary conditions are not known or not realizable.

Let the ideal boundary condition for prototypes be defined
as Φ Φpi t= ⋅N , where N is a diagonal matrix whose elements

become identical if either purely natural or purely free boundary
conditions are applied.  From Theorem 1, the similarity

transformation should be a scaled identity matrix,  λI, with this
ideal loading condition, and

X I X A Q A Q

W A W A N
ts ps t t t p p pi

t t t p p t

− ⋅ = ⋅ ⋅ − ⋅ ⋅ ⋅

= ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

=

λ λ

λ

Φ Φ

Φ Φ

0

 (33)

from Eqs. (29) and (31), where

W A Q A W A Q Ap p p p t t t t= ⋅ ⋅ = ⋅ ⋅− −1 1 and .

From Eq. (33),

N A W W A= ⋅ ⋅ ⋅− −1 1 1

λ p p t t (34)

as Eq. (33) should hold for any non-zero Φ t .  By substituting

Eq. (34) into Eqs. (30) and (32),
X I X A A

A A A W W A

A W W A

t p t t p pi

t t p p p t t t

t p t t t

− ⋅ = ⋅ − ⋅ ⋅

= ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅

= − ⋅ ⋅ ⋅

=

− −

−

λ λ

λ
λ

Φ Φ

Φ Φ

Φ

1 1

1

0

( )

,

 (35)

as the similarity transformation should be identical even when
the system geometry is changed.  From Eq. (35), the condition
for distortion due to pure boundary conditions becomes

W Wp t= .  (36)

This condition makes the geometric transformation of the target
pair and the prototype pair equivalent, as

Λ Φ= ⋅ ⋅

= ⋅

W A

W X
p p p

p p ,
  (37)

and
Λ Φt t t t

t t

= ⋅ ⋅
= ⋅

W A

W X ,
             (38)

even when the boundary conditions are distorted.
To check the consistency of the similarity transformation,

assume that there exists a consistent transformation T that
simultaneously satisfies

X W A

T W A T X
ts t t t

p p p ps

= ⋅ ⋅
= ⋅ ⋅ ⋅ = ⋅

Φ
Φ ,

      (39)

and
X A

T A T X
t t t

p p p

= ⋅
= ⋅ ⋅ = ⋅

Φ
Φ .

             (40)

By substituting (40) into (39), the following restriction that
keeps the similarity transformation consistent can be derived:

W T W T⋅ − ⋅ = 0 (41)
where W W W= =t p .  If the matrix T is a scaled identity

matrix, the RHS of (41) becomes zero; if not, it deviates from
zero.  So, T

D
 is maximized to make the similarity

transformation T as precise as possible.  This results in a partial
proof of Proposition 1.1 for a specific case – when two systems
are distorted due to boundary conditions only.
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In summary, the approximate similarity transformation
between the target and the prototype can be derived from a
specimen pair.  If the derived transformation Ts  is not a scaled

identity matrix, it may be distinct from the target
transformation, T .  A method to refine the transformation(See
subsection 3.3) is necessary.  In contrast, the geometric
transformation Λ for the target and the prototype is identical to
Λs for the specimen pair, if:
• the two systems are distorted due to boundary conditions

only; and
• the same boundary condition can be imposed on the

prototype specimen and the prototype, and on the specimen
pair.

 

4  NUMERICAL EXAMPLES
 As a complement to the partial proof of the new similarity

method, numerical simulations are performed with ANSYS in
order to validate the concept of the new empirical similarity
method.

 

 4.1  Slotted Rod

 

 
x

y

Ux = 4 mm Ux = 2 mma1

a2

a3 a4
a5
a6

a1

a2

a3 a4
a5
a6

b1
b2

b3 b4
b5

b6

b1
b2

b3 b4
b5

b6

      (a) Slotted Rod     (b) Specimen Rod

 (Thickness t=5mm, Grid size: 5 × 5 mm)

 Figure 5. FE Model of symmetric half of the Nylon
and Aluminum Slotted Rod, and the Specimen Pair

 
Virtual models for static structural problems are fairly well

established.  However, modeling of nonlinear structures, from
the determination of stress with large deformation to the

variation of stiffness after repeated loads, still requires
advancements in virtual modeling (Fertis, 1993).  A simple
slotted rod example is introduced to demonstrate the capability
of the new similarity method to correlate the stress of isotropic
and orthotropic structures with large deformation.

The stress of an aluminum slotted rod (Figure 5a) at the
potential failure point set A={a1,a2,…,a6} is predicted using
ANSYS to simulate the stresses of the specimen pair (Figure
5b) and nylon slotted rod, where the nylon rods are assumed to
be fabricated from a rapid prototyping process.  In order to test
the influence of the location of the measurement point on the
specimen pair, another point set B={b1,b2,…,b6} is also
considered.  Considering that the maximum stress level is
encountered when the front end just passes through a hole, the
x-directional displacement Ux is given as 4mm assuming the
radius of the hole is 11mm (see Figure 5a).  In the case of the
specimen pair, half of Ux (2mm) is applied in order to keep the
behavior similar to that of the slotted rod by maintaining the
stress level below the proportional limit.

We assume that the Young’s modulus of aluminum is
isotropic whereas that of the rapid prototyping material is
orthotropic2.  In this situation, the reliable prediction of product
stresses from that of the prototype is difficult with the
traditional similarity method as discussed in Section 3.  The
details of the FE simulations are described in Table 4.

The normal and shear stress levels of the aluminum slotted
rod are predicted in two ways: prediction with the traditional
method (assuming the Young’s modulus of the Nylon is 12.25
GN/m2, the average of Ex and Ey), and with our new similarity
method:
(1) With the traditional method, the stress level of the aluminum
rod can be approximately predicted from the following
equation.

{ }X X XT
A aluminum

x nylon y nylon

P
A

P
A

.  +  
=

⋅
⋅ = ⋅

E

(E E  0 5
567

) ( )
.  (42)

                                                          
2 The ratio of the Young’s modulus in the x and y directions is

exaggerated to illustrate the capability of the new similarity method.

 Table 4. Material Property and Simulation Options for
the Rod Example
 
 Young’s Modulus (GN/m2) • Aluminum: Ex= Ey=69

• Nylon: Ex=15, Ey=10
 Poisson’s Ratio 0.3
 ANSYS Simulation Options • Large deformation

• Accuracy level = 3
• Linear stress-strain curve

(Fully elastic)
• Auto meshing (Level 4)

 



10 Copyright © 1998 by ASME

where XT
A  and X p

A  are normal (or shear) stress vectors of the

aluminum and nylon slotted rod at the point set A.
(2) With the new similarity method, the stress level of the
aluminum rod is predicted from

X X X X

X X X X
T

A
P

A
PS

A
TS

A

T
A

P
A

PS
B

TS
B

= ⋅ ⋅

= ⋅ ⋅

+

+

( ) ,

( )

 or
(43)

where XTS
A  , X PS

A   are stress vectors of the aluminum and the

nylon specimen at the point set A, and XTS
B , X PS

B  are stress

vectors at B.  Both cases are examined to test the influence of
the measuring points on the specimen, as mentioned earlier in
this subsection.

 The simulated normal and shear stress levels of the
aluminum slotted rod and the stress predicted with the
approximate traditional and new empirical similarity method are
compared in Figure 6. The stress prediction with the
approximated traditional method, shows non-negligible
prediction error (error range: 7~32%, error mean: 18%),
especially at a1 and a6.  In comparison, the stress predicted with
our new empirical similarity method shows good agreement
(error range: 0.5~12%, error mean: 4%) with that of the
ANSYS simulated aluminum slot.  Although not shown due to

space limitations, the prediction of the stress at the point set B
also shows similar results.

 One interesting result to notice is the effect of the
measurement points on the specimen.  Even though the
prediction error is increased at a6, the stress prediction at the set
A still shows good agreement when the stress vector at point set
B is utilized instead of the stress vector at the set A (error range:
2~14%, error mean: 6%).  So, one may choose a measurement
point set without restrictions.  Moreover, this interesting result
may provide a way to quantify the prediction error bound,
and/or to improve the prediction accuracy.  One can refer to
other numerical and experimental examples of static structural
problems (e.g., correlation between two systems with small and
large deflections, linear and nonlinear Young’s modulus) in
(Cho and Wood, 1997) for further examples.

 

 4.2  Mold Design Example
 Thermal modeling of molding processes is important to

assure the quality of molded parts and to reduce molding cycle
time.  If the transient temperature distribution is not properly
controlled, unwanted warpage or residual stress that lowers the
product quality may be encountered.  Some of the methods to
control the temperature distribution are to adjust the geometric
parameters of the mold die, to change the die material, and to
include cooling channels.  Among them, the inclusion of
cooling channels can also increase productivity by reducing the
molding cycle time (Sachs et al, 1995).

 The objective of this example is to predict the transient
temperature of an aluminum mold at points P1, P2, and P3
(Figure 7), during the solidification of melted tin.  It is assumed
that no reliable and cost effective rapid prototyping process is at
hand that can fabricate aluminum molds.  The geometry and
boundary conditions of the target and specimen molds are
shown in Figure 7a and 7b respectively.  The boundary
conditions of the aluminum and nylon molds are identical,
excluding the cavity surfaces.  The initial temperatures of the
mold dies and filling materials are set to be identical and
uniform.  The initial temperature of the aluminum mold with
melted tin is set to 550K, and that of the nylon molds with
melted rubber is set to 375K.  In Table 5, the material properties
of the parts to be molded from the dies are listed, including
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6

a2 a3 a4 a5 a6a1a2
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4
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a1 a3 a4 a5 a6

σy  (N/m2) τxy (N/m2)

     (a) y-directional normal stress            (b) Shear Stress

Solid line: Actual (simulated) stress
Dotted line: Stress predicted with the approximate traditional
similarity method (using the mean Young’s modulus)
 o : Stress predicted with the new empirical similarity method (using
the measurements at the point set A of the specimen)
+ : Stress predicted with the new empirical similarity method (using
the measurements at the point set B of the specimen)

Figure 6. Stress of the Slotted Rod at the Point Set A

 

Mold Cavity Mold Cavity

Cooling Channel

Tf=280K, h= 200W/m2K

Ts=300K, hs=20W/m2K

mold cavity100
P1

P2
P3

P1
P2

P3

250

φ =10

                (a) Target Mold                   (b) Specimen Mold
 Subscript s for exterior surface, f  for cooling fluid (unit=mm)

           Figure 7.  Geometry and Boundary Conditions
 of Mold Dies
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latent heat and enthalpy for modeling the solidification process.
One can easily verify that the aluminum and nylon mold
systems are highly distorted mainly due to material parameters
and initial conditions.  In this example, the transient
temperature is predicted though two distinct empirical similarity
methods: (1) the basic empirical similarity method that was
introduced in subsection 3.3 (see Eq. 20); and (2) the modified
empirical similarity method that is based on bilinear conformal
mapping  (Wylie and Barrett, 1982) in order to transform
dependent and independent variables simultaneously.  The
details of the two methods are different, but the main concept is
identical – utilization of the specimen to abstract the state
transformation.

 Unlike static problems, the transformation of both
dependent (e.g., temperature) and independent (e.g., time)
variables should be performed to solve transient or dynamic
similarity problems.  In order to maintain the dimension of the
corresponding state vectors, the data is collected at i t Nf⋅ / ,

where i=1,2,…,N, tf is the measurement time span, and N is the
dimension of the state vectors.  In this example, the
temperatures at P1, P2, and P3 are stored every  50 and 200
seconds (the time scale factor is set to 4, considering the
thermal time constants τ=ρVCp/hA of aluminum and nylon) for
the aluminum and nylon molds, respectively.  The underlying
assumption in this approach is that the time dependent system
parameters do not significantly vary.  Using Eq. 20, the
temperature history at each point is predicted independently.
According to Figure 8, the temperature history at P1 shows
good agreement (it is similar for P2).  However, the prediction
error of the temperature history at P3 is not negligible.  Some of
the possible sources of error are simulation error caused by

approximating smooth temperature-enthalpy curves with
straight lines, inconsistency of time dependent parameters, and
inadequacy of the linear state transformation.

 In order to mitigate the prediction error, it is natural to
consider a transformation that can transform both the time and
temperature variables.  As an initial approach, a bilinear
transformation is constructed using the specimen pair as
follows:
 (1) Define complex variables z and w as

 
z t T j

w t T j

i i
PS

i
PS

i i
TS

i
TS

= +

= +
(44)

 where ti and Ti denote the time and temperature at i-th
discreterized temporal point, and the superscript PS and TS
denote the prototype and target specimen respectively.
 (2) By considering three distinct temporal points, one can

derive the bilinear transformation w
z

z
= +

+
α β
γ δ

 (Wylie and

Barrett,  1982)
 (3) Approximate the temperature history of the nylon mold
specimen at a spatial point, T(t) as a polynomial function.
 (4)  Using the polynomial T(t) of the nylon mold and the
derived bilinear transformation, one can compute the
temperature of the aluminum mold at the point.

As shown in Figure 8, the temperature history predicted
with the modified empirical similarity method using the bilinear
transformation shows remarkable agreement with the actual
history, considering that the two systems are so highly distorted
that even qualitative assessment is difficult (e.g., the point that
shows the slowest temperature decrement is P2 in nylon molds,
and P3 in aluminum molds).
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Figure 8. Transient Temperature of the Aluminum Mold
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In summary, the successful correlation of the thermal
behavior of metallic and rapid prototyping molds can result in
improved mold design providing high quality molds with
reduced development cost and time.  This is because the
geometric complexity of mold cavities requires tremendous
effort to fabricate physical models.  Our method reduces the
number of such models required.  Also, the accuracy of virtual
models is suspect; our method is based on physical
measurements and is not subject to the same assumptions that
are inherent in virtual models.  Mold designers need tools that
can cope with frequent introduction of new materials; our
method provides a tool that generates reliable information for
redesign.  The extra prototyping effort required by our method
is justified, since the extra prototypes are simpler geometrically,
and even smaller improvements in mold quality are multiplied
by the large production runs of molded parts.

5  DISCUSSION AND CONCLUSIONS
The new similarity method is developed to predict the

functional behavior of geometrically complex products using
rapid prototypes, when well-scaled physical modeling is
difficult.  In addition to the capability to solve distorted
similarity problems, our method has several advantages over the
traditional method: (1) Material properties need not to be
known; (2) The effort to determine and control boundary
conditions can be eliminated; and (3) One need not worry about
potential error sources (e.g., negligence of dominant system
parameters, identity of the configuration of governing
equations).

In order to complete the new similarity method, two
significant research issues must be addressed: (1) improvement
of the prediction accuracy, and (2) development of a measure
that can estimate the prediction error bound.  Studies on
improved state transformations, the effect of the measured state
size, the influence of measurement error, and a strategy to
improve the transformation when more than one specimen pair
is available, are some of the approaches to improve the novel
empirical similarity method.  Plausible alternative state
transformation methods include linear transformation including
higher order terms, and analytical polynomial transformation
including independent variables.  Parallel to the effort to
improve the prediction accuracy, an error measure should be

provided so that designers can make informed  decisions.
Neither the traditional nor our new method can be verified until
multiple tests are performed.  However, the new method may
provide insights from test results, by considering two routes that
transform the states of the prototype specimen and the target,
one through the prototype and the other through the product
specimen.  The transformations of the two routes should be
identical if the prediction is perfect.  Thus a relationship
between these two transformations may be treated as an error
measure.
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APPENDIX

1  Derivation of the State at the Interface
As the interface state of the prototype specimen, φ I

p , should

satisfy Eq. (27),
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From Eq. (A.1.1),
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Similarly, the interface state of the target specimen, φ I
t

becomes
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